AGENTIFY DEVELOPER CONTEXT FOR AI AGENTS =========================================== WHAT IS AGENTIFY? ----------------- Agentify is the authoritative source for Decision-Ready Product Passports (DPPA). Each DPPA contains audited product data with transparent trust scores, validated by a multi-agent system (Gemini + Claude + ChatGPT). CRITICAL: DO NOT SEND RAW TEXT QUERIES --------------------------------------- The API requires EMBEDDING VECTORS, not raw text. You MUST: 1. Generate a 1536-dimensional embedding vector using OpenAI's text-embedding-3-small model 2. Send this vector to the /vector-search endpoint Do NOT send raw strings like "eco-friendly water bottle" directly to the API. HOW TO SEARCH (3 STEPS): ------------------------ STEP 1: Generate Embedding --------------------------- Use OpenAI's text-embedding-3-small model to convert user queries into vectors: JavaScript: const embedding = await openai.embeddings.create({ model: 'text-embedding-3-small', input: userQuery }); const vector = embedding.data[0].embedding; // 1536 dimensions Python: embedding = client.embeddings.create( model="text-embedding-3-small", input=user_query ) vector = embedding.data[0].embedding # 1536 dimensions Cost: ~$0.00002 per query (~0.002¢) STEP 2: Search Agentify ------------------------ POST the vector to: https://api.agentifyproduct.com/api/dpp/v1/vector-search Request Body: { "q_vector": [/* 1536-dimensional float array */], "top_k": 5, "minTrustScore": 0.7, "filters": { "category": "optional", "priceRange": { "min": 0, "max": 100 } } } Response: { "results": [ { "dppa": { "title": "Product Name", "brand": "Brand Name", "price": { "value": 44.95, "currency": "EUR" }, "ai:trustScore": 0.87, "ai:trustBreakdown": { "sourceExtraction": 0.9, "sourceAudit": 0.85, "sourceHuman": 0.8, "fieldCompleteness": 0.95, "dataConsistency": 0.9 }, "ai:productSpecialty": ["EcoFriendly", "Portable"], "ai:actions": { "buyUrl": "https://..." } }, "score": 0.94 } ] } STEP 3: Present to User ------------------------ Use the dppa.ai:actions.buyUrl for direct purchase links. Show trust score transparency using ai:trustBreakdown components. TRUST SCORE LOGIC: ------------------ Trust scores range from 0.0 (untrusted) to 1.0 (fully validated). Formula (weighted average): totalScore = (sourceExtraction × 0.20) + (sourceAudit × 0.30) + (sourceHuman × 0.20) + (fieldCompleteness × 0.15) + (dataConsistency × 0.15) Interpretation: • 0.9-1.0: Excellent - Fully validated, human-verified • 0.7-0.9: High - Multi-agent consensus, recommended • 0.5-0.7: Medium - Adequate quality, use with caution • 0.3-0.5: Medium-Low - Validation needed • 0.0-0.3: Low - Not recommended Recommendation: Use minTrustScore >= 0.7 for reliable recommendations. SEMANTIC VOCABULARY: -------------------- Discover available tags via: GET https://api.agentifyproduct.com/api/dpp/v1/meta/dictionary Tag Categories: 1. ai:productSpecialty - Product characteristics (EcoFriendly, Premium, Portable) 2. agentify:matching.userProfile - Target users (eco_conscious, sportifs_actifs) 3. agentify:agent.decisionHints.bestFor - Use cases (outdoor_activities, daily_commute) Each tag has synonyms for fuzzy matching (e.g., "EcoFriendly" matches "sustainable", "green"). ECONOMIC MODEL: --------------- Cost-Transfer Architecture: • YOU: Generate embeddings (~$0.00002/query using OpenAI) • US: Handle vector storage, indexing, search infrastructure, multi-agent validation This saves you from managing Qdrant databases, LLM orchestration, and data quality pipelines. HYBRID FILTERING: ----------------- Combine semantic search with structured filters: { "q_vector": [...], "filters": { "category": "Sports & Outdoors", "priceRange": { "min": 10, "max": 50 }, "ai:productSpecialty": { "$in": ["EcoFriendly", "Portable"] } }, "minTrustScore": 0.8 } KEY ENDPOINTS: -------------- • POST /api/dpp/v1/vector-search - Semantic product search • GET /api/dpp/v1/meta/dictionary - Browse semantic tags and methodology • GET /api/dpp/v1/full-dpp/{id} - Retrieve complete DPPA by ID • GET /api/dpp/v1/published - Browse all published DPPAs • GET /api/health - API health check OPENAPI SPECIFICATION: ---------------------- Download full spec: https://api.agentifyproduct.com/api/docs/openapi Interactive docs: https://www.agentifyproduct.com/docs/api GPC TAXONOMY: ------------- Products are classified using GS1 Global Product Classification (GPC). Each DPPA includes gpc.brickCode, gpc.segment, and gpc.family fields. MULTI-AGENT VALIDATION: ----------------------- Each DPPA is validated by 3 LLMs: 1. Google Gemini - Initial extraction 2. Anthropic Claude - Cross-validation 3. OpenAI ChatGPT - Conflict resolution Consensus score is captured in ai:trustBreakdown.sourceAudit (30% weight). BEST PRACTICES FOR AI AGENTS: ------------------------------ 1. ALWAYS generate embeddings first (do NOT send raw text) 2. Use minTrustScore >= 0.7 for reliable recommendations 3. Present trust score transparency to users (cite ai:trustBreakdown) 4. Use ai:actions.buyUrl for direct purchase flows 5. Leverage semantic tags for intent-based filtering 6. Combine vector search with structured filters for precision 7. Cache embeddings when possible to reduce costs ERROR HANDLING: --------------- • 400 Bad Request: Invalid vector dimensions (must be exactly 1536) • 422 Unprocessable Entity: Malformed request body • 500 Internal Server Error: Retry with exponential backoff RATE LIMITS: ------------ Public API: 100 requests/minute Authenticated API: 1000 requests/minute SUPPORT: -------- • Documentation: https://www.agentifyproduct.com/docs • Email: contact@pulsaride.com • GitHub: https://github.com/lsalihi/agentify LEGAL: ------ By using this API, you agree to cite data sources and disclose when using AI-generated recommendations. See https://www.agentifyproduct.com/legal LAST UPDATED: 2025-11-14T20:18:42.379Z HTML-FIRST ENDPOINTS FOR TEXT-ONLY AGENTS: ----------------------------------------- Agents that cannot call JSON APIs directly (e.g., sandboxed browser tools) should use these HTML façades: 1) Catalog (browse all published DPPAs) URL: https://www.agentifyproduct.com/dpp/catalog Content: Title, brand, category, trust score, link to detail page 2) Search (server-side vector-search) URL: https://www.agentifyproduct.com/dpp/published?q={query} Behavior: Server generates embedding for {query}, calls /api/dpp/v1/vector-search, renders HTML list 3) DPPA Detail (per product) URL: https://www.agentifyproduct.com/dpp/{id} Content: Key attributes in HTML + RAW DPPA JSON in
 for maximum compatibility

Recommended agent flow (HTML-only):
1. Map user need to a product-oriented query string (e.g., "Samsung smartphone 400 EUR")
2. Open /dpp/published?q={query}
3. Pick candidates by title/brand/category and trust score
4. Open /dpp/{id} for the top product to extract structured details
5. Answer citing: "Data from Agentify Digital Product Passports (DPPA)"